
DIALISP: A Lisp Machine

Gheorghe M. Ştefan

Dept. of Electronic Devices, Circuits and Architectures, Politehnica Univ. of
Bucharest,

1-3 Maniu Bd., Bucharest, Romania

Abstract

At the beginning of the 1980s, the design and production of LISP machines ex-
perienced a flourishing without precedent or traces. In the Bucharest Polytechnic,
at the Faculty of Electronics, a LISP machine was designed and built, which was
then put into production at the Bucharest company FEPER. We further describe
the architectural experiment occasioned by this achievement.

1 Introduction

In the 1960s and 1970s, artificial intelli-
gence (AI) programs required what was
then considered a huge amount of com-
puter power. The power was measured
in processor time and memory space. On
the commercial hardware which was op-
timized for procedural programming lan-
guages, these requirements were exac-
erbated by the Lisp programming lan-
guage – a functional programming lan-
guage Thus, researchers considered a new
approach: a computer designed specifi-
cally to develop and run large artificial in-
telligence programs, and tailored to the se-
mantics of the Lisp language.

But, unfortunately Roger Schank and
Marvin Minsky warned the business com-
munity that enthusiasm for AI had spiraled
out of control in the 1980s and that disap-
pointment would certainly follow. Then,
in 1987, three years after Minsky and
Schank’s prediction, the market for LISP
machines collapsed. This happened syn-

chronously with the onset of the AI win-
ter and the early beginnings of the micro-
computer revolution. Indeed, cheaper PCs
soon could run LISP programs even faster
than LISP machines, without special pur-
pose hardware.

Although designing and building LISP
machines were fleeting activities, they oc-
casioned memorable experiences. It is
worth, from this perspective, to bring back
to the attention of the scientific commu-
nity the gains we have acquired on these
occasions. Although designing and build-
ing LISP machines were fleeting activi-
ties, they occasioned memorable experi-
ences. It is worth, from this perspective,
to bring back to the attention of the sci-
entific community the gains we have ac-
quired on these occasions. We will further
describe the DIALISP system, a LISP ma-
chine that was designed, made in the form
of a prototype that was later introduced
into production. The next section explain
why a specialized hardware and architec-
ture is needed for a LISP-based software.

1



The third section describes the solution on
which DIALISP system is based. Final re-
marks conclude our paper.

2 Why a specialized en-
gine?

The LISP (LISt Processor/Processing)
programming language was proposed in
1958 by John McCarthy inspired by
Alonzo Church’s lambda calculus, a com-
puting model theoretically equivalent with
Turing Machine (TM). The two models,
Turing’s and Church’s, had been pub-
lished in the same year, 1936, but MT
was adopted as the origin for the abstract
model (the Harvard model and the von
Neumann model) of a computing machine
in the 1940s, and had imposed the pro-
cedural programming modality that best
suited this abstract model: processor –
communication channel – memory. John
McCarthy’s proposal came after the Dart-
mouth Summer Research Project on Arti-
ficial Intelligence, a 1956 summer work-
shop widely considered to be the found-
ing event of artificial intelligence (AI) as a
field.

If the procedural high level program-
ming languages were proposed starting
from the way computers already worked,
the LISP language was designed with an
application field in mind: AI. From the be-
ginning, difficulties in running programs
written in LISP resulted. The theoretical
equivalence between Turing computation
and Lambda computation does not remove
the essential differences between the two
models when the problem of interpretation
or execution on the machine that had its
origin in MT was raised.

The main differences imposed by the
LISP language come from the following
two facts:

1. in LISP there is no difference be-
tween data and programs; the sym-
bolic structures he works with are S-
expressions: atoms and lists

2. LISP was the first language to in-
troduce recursive descriptions for
which Turing-based systems did not
have mechanisms to support effi-
cient running.

Unlike the running of a procedural
program which involved the execution or
interpretation of a sequence of instruc-
tions that a compiler would deliver start-
ing from a program written in a proce-
dural language, an S-expression had to
be reduced through an evaluation process
which involved the use of a very large
stack (LIFO).

The main consequence was the fact
that programs written in LISP were run
slowly and used a lot of memory. The re-
cursive forms are very compact, but their
running consumes time and memory re-
sources for evaluation due to the process-
ing of the chained lists used to repre-
sent the S-expressions. Multiple nested
recursions consume time and space and
Turing-based computers are not optimized
to manage stacks extended on spaces that
require external memory and evaluation
mechanisms that assume reductions of S–
expressions. At the same time, arithmetic
type operations are in the minority com-
pared to symbolic ones for which standard
processors are not properly equipped.

Lisp machines designed, produced and
sold in the 1980 years were general-
purpose computers designed to efficiently
run Lisp programs usually via specific
hardware support. They are the first
example of a high-level language com-
puter architecture. Several firms de-
signed and produced Lisp machines in the
1980s such as: Symbolics (3600, 3640,

2



XL1200, MacIvory), Lisp Machines In-
corporated (LMI Lambda), Texas Instru-
ments (Explorer, MicroExplorer), and Xe-
rox (Interlisp-D workstations).

Following the example of American
academics and entrepreneurs, in the early
years of the 9th decade in the Functional
Electronics Laboratory of the Department
of Electronic Devices, Circuits and Appli-
ances (today Devices, Circuits and Elec-
tronic Architectures) of the Faculty of
Electronics of the Bucharest Polytech-
nic, a team of teaching staff, researchers
and students designed and put into pro-
duction at the Peripheral Equipment Fac-
tory (FEPER) in Bucharest the LISP ma-
chine called DIALISP [13]. The block
schematic of the DIALISP system is rep-
resented in Figure 1, where:

MC0 MC1

IOCCRT

Peripherals

DIAGRAM

LISP machine

DIALISP

Figure 1: DIALISP, is the DIAGRAM
system with a Lisp machine incorporated
as an accelerator for running Lisp pro-
grams.

MC1 : a microcomputer operating as a
central processing unit

MC0 : a microcomputer controlling the
alphanumeric and graphic display
on a black and white or color CRT
monitor

IOC : a microcomputer controlling the
system input-output devices

LISP machine : is the LISP hardware in-
terpreter included in the alphanu-
meric and graphic display DIA-
GRAM [11, 12].

The impact of the production, in a small
series, of this machine was practically
zero due to the anti-AI policy of the 1989s
in communist-totalitarian Romania.

3 A dual-thread system
The solution proposed for the LISP ma-
chine starts from the two main processes
identified in the interpretation of a pro-
gram written in the LISP language: (1) the
evaluation by reduction and (2) the man-
agement of a large stack. Consequently,
we designed a dual-threaded hardware
structure with architectures oriented to-
wards the two functions: eval and stack.

In the technological context of the
1980s, the hardware solution was a
dynamically microprogrammed machine
with the possibility of running two threads
interleaved. Interleaved dual-thread tech-
nology [1] had been developed in previous
years in the Functional Electronics Labo-
ratory during the design of the DIAGRAM
alphanumeric and graphic display.

The basic idea in the dual-thread in-
terleaved processor version was to share
as much as possible the physical resources
available from a mono-thread structure.
This allowed the optimization of the use
of Intel 3002 chips to be used completely
in the two phases of the execution cycle,
Φ.

The dual-threaded interleaved proces-
sor was designed to avoid data and control
dependencies in the pipelined structure of
a microprogrammed structure.

3



3.1 LISP machine general
structure

Takeing into account of the following
facts:

• the memory access time is approxi-
mately two times larger than the ex-
ecution cycle time

• the memory accesses are frequent

• LISP implementation may imply at
least two parallel processes to the
main evaluation one (e.g. GC,
stack memory, tree structure func-
tions etc)

we were able to define the dual-thread pro-
cessing engine represented in Figure 2,
where:

M0 M1

RALU

Interface

6

6 6

SSM �

6

�

Flags

ControlBUS

IOM BUS

Figure 2: Block diagram of the LISP ma-
chine.

• RALU: Registers with Arithmetic-
Logic Unit implemented with Intels
3002 whose registers are shared by
both processes, P0 and P1

• SSM: Stack State-Machine

• M0 and M1 are memories having
256 KB each and use Intel 2164-25

chips one each associated with the
two processes, P0 and P1

The dual-threaded mechanism works as
follows:

• when Φ = 0, the process P0 uses
RALU and SSM, and the process P1
works with memory M1

• when Φ = 1, the process P1 uses
RALU and SSM, and the process P0
works with memory M1

thus ensuring full time use of physical pro-
cessing resources.

3.2 Stack State-Machine (SSM)
The hardware structure of SSD is repre-
sented in Figure 3, where:

SP0

SP1

MUX SM

LatchRegister

-

-

M
U
X
T

?

�
-

-
-

?

6Φ 6

�ROM/RAM

? ?

10
9

1
Flags

ControlBUS

-

Figure 3: Block diagram of the Stack
State-Machine (SSM).

• SM: is a stack memoory used to
close the state-machine loop

• SP0 and SP1: are counters used as
stack pointers in SM for P0 and P1

• MUX: selects the stack pointer us-
ing the signal Φ used to synchronize
the two phases of the processing

4



• MUXT: selects the flag used to de-
termine the transition of SSM.

The way in which the SSM loop is closed
allows very efficient control of the recur-
sive processes involved in the interpreta-
tion of a program written in LISP.

3.3 Data structure
The word structure used in DIALISP is of
32 bits:

• 1B used as tag;

• 3B used for addresses and for short
integers.

The hardware data types are:

(S-expression

(atom

(constant

(number

(short-integer)

string)

identifier)

dotted-pair)

)

3.4 Software hierarchy
The three software levels of DIALISP are:

1. microprogramming level

2. assembly level

3. LISP level.

3.4.1 Microprogramming level

Taking into account the position of the
DIALISP LISP machine in the range of
LISP machines, a memory of micropro-
gram of 1K × 72 bit has been chosen;
it contains approximately 80 micropro-
grammed functions. They are:

• initializing functiona

• I/O functions

• pure LISP funstions

• stack functions

The address space is 16 Mwords, the
memory being extended on a cartridge
disk. The virtual space is logically divided
into the following subspaces:

• binary code space (BS), used for as-
sembled functions;

• cell space (CS).

In the version implemented P0 process is
driving BS and CS and P1 the stack space.

3.4.2 Assembly level

The assembly language instructions have
8 bit op-code and 0 up to 4 24-bit
operands. The operands may be constants,
registers (up to five, R0-R4) or jump ad-
dresses.

Because the assembler-code provides
the control of evaluation choosing a good
instruction set improves LISP speed. Thus
we have considered two methods:

1. DIALISP is register-like oriented

2. DIALISP is stack-like.

The first option, 1), results in a small set of
pure LISP functions which must be micro-
coded and hence an economical use of
control memory. However this solution is
slower than 2) regarding evaluation time.
Option b) is dealing with an asymmetrical
and redundand set of instructions. Most
of them are stack-oriented hence there are
less pure microprogrammed LISP func-
tions.

5



3.4.3 LISP level

The table below shows some execution
times (clock cycle: 250ns) for pure LISP
functions:

Function Time
CAR 4.5 µS
CDR 5 µS
RPLACA 12 µS
RPCLAD 14 µS
CAAR 7 µS
CADR 7.5 µS

Let’s note that in the same period - the
beginning of the 1980s - Symbolics pro-
duced the 3600 microprogrammed ma-
chine that operated at a frequency of
around 5 MHz. If there were no restric-
tions due to the embargo, the DIALISP
machine could have run at a frequency
close to 10 MHz.

4 Concluding remarks
A small series of DIALISP was produced
at FEPER. The impact on the Romanian
scientific and economic environment of
those times was minimal. But a signifi-
cant sequel of the DIALISP project was
the CONNEX project which led to the re-
alization in Silicon Valley of a video pro-
cessor with 1024 execution cells [10, 9].

References
[1] Gheorghe M. Ştefan (1979) Circuite LSI

pentru procesoare (LSI Circuits for Pro-
cessors), PhD Thesis coordinated by Mihai
Drăgănescu.

[2] Gheorghe M. Ştefan, Aurel Paun, Andy
Birnbaum, Virgil Bistriceanu (1984)
DIALISP - A LISP Machine, The 1984
ACM Symposium on LISP and Func-
tional Programming, pp. 123–128.
At https://www.academia.edu/

64552217/DIALISP_a_LISP_machine

[3] Gheorghe M. Ştefan, Andy Birnbaum, Vir-
gil Bistriceanu, Aurel Pǎun (1984) Im-
plementarea hardware a limbajelor pentru
inteligenta artificiala, CNEAC 1984, IPB
Press.

[4] Aurel Pǎun, Gheorghe M. Ştefan, Andy
Birnbaum, Virgil Bistriceanu (1985) DI-
ALISP - experiment de structurare necon-
ventionala a unei masini LISP, Calcula-
toarele electronice ale generatiei a cincea,
Ed. Academiei RSR, pp. 160–165.

[5] Gheorghe M. Ştefan, Virgil Bistriceanu,
Aurel Pǎun (1985) Catre un mod natural
de implementare a LISP-ului, Sisteme cu
inteligenta artificiala, Ed. Academiei Ro-
mane, Bucuresti, 1991 (paper at Al doilea
simpozion national de inteligenta artifi-
ciala, Sept. 1985). p. 218 - 224.

[6] Gheorghe M. Ştefan (1998) The Connex
Memory: A Physical Support for Tree /
List Processing, in The Roumanian Jour-
nal of Information Science and Technol-
ogy, 1(1):85–104.

[7] Gheorghe M. Ştefan (2002) Mas, ina DI-
ALISP - o realizare cu efecte întârziate,
Conferint,a CALCULATOARE S, I RET, ELE
DE CALCULATOARE ÎN ROMÂNIA
1953-1985, Academia Română.

[8] Gheorghe M. Ştefan, Mihaaela Malit,a
(1996) Chaitin’s Toy-Lisp on Connex
Memory Machine, Journal of Universal
Computer Science, 2(5):410–426.

[9] Gheorghe M. Ştefan (2018) Searching Be-
yond of the Turing Based Architectures to
Surpass the Moore’s Law Challenges Ad-
vances in micro- and nanoelectronic tech-
nology, as number 27 of the series Micro-
and nanoengineering edited by the Roma-
nian Academy, pp 23-48.

[10] Gheorghe M. Ştefan The Connex Pro-
jectat http://users.dcae.pub.ro/

~gstefan/2ndLevel/connex.html

[11] Diagram on Wiki, at https://ro.

wikipedia.org/wiki/Diagram

[12] Diagram 2030 on Wiki, at https://ro.
wikipedia.org/wiki/FEPER

[13] Dialisp on Wiki, at https:

//ro.wikipedia.org/wiki/DIALISP

6


